On the finite sample performance of the nearest neighbor classifier

نویسندگان

  • Demetri Psaltis
  • Robert R. Snapp
  • Santosh S. Venkatesh
چکیده

Abstruct-The finite sample performance of a nearest neighbor classifier is analyzed for a two-class pattern recognition problem. An exact integral expression is derived for the m-sample risk R, given that a reference m-sample of labeled points is available to the classifier. The statistical setup assumes that the pattern classes arise in nature with fixed a priori probabilities and that points representing the classes are drawn from Euclidean n-space according to fixed class-conditional probability distributions. The sample is assumed to consist of m independently generated class-labeled points. For a family of smooth classconditional distributions characterized by asymptotic expansions in general form, it is shown that the m-sample risk R,,, has a complete asymptotic series expansion

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)

In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...

متن کامل

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

Center-based nearest neighbor classifier

In this paper, a novel center-based nearest neighbor (CNN) classifier is proposed to deal with the pattern classification problems. Unlike nearest feature line (NFL) method, CNN considers the line passing through a sample point with known label and the center of the sample class. This line is called the center-based line (CL). These lines seem to have more capacity of representation for sample ...

متن کامل

Asymptotic derivation of the finite - sample risk of the k nearest neighbor classifier ∗ ( Technical Report UVM – CS – 1998 – 0101 )

The finite-sample risk of the k nearest neighbor classifier that uses a weighted Lpmetric as a measure of class similarity is examined. For a family of classification problems with smooth distributions in Rn, an asymptotic expansion for the risk is obtained in decreasing fractional powers of the reference sample size. An analysis of the leading expansion coefficients reveals that the optimal we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 40  شماره 

صفحات  -

تاریخ انتشار 1994